Role of Minor Groove Width and Hydration Pattern on Amsacrine Interaction with DNA

نویسندگان

  • Deepak K. Jangir
  • Suman Kundu
  • Ranjana Mehrotra
چکیده

Amsacrine is an anilinoacridine derivative anticancer drug, used to treat a wide variety of malignancies. In cells, amsacrine poisons topoisomerase 2 by stabilizing DNA-drug-enzyme ternary complex. Presence of amsacrine increases the steady-state concentration of these ternary complexes which in turn hampers DNA replication and results in subsequent cell death. Due to reversible binding and rapid slip-out of amsacrine from DNA duplex, structural data is not available on amsacrine-DNA complexes. In the present work, we designed five oligonucleotide duplexes, differing in their minor groove widths and hydration pattern, and examined their binding with amsacrine using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Complexes of amsacrine with calf thymus DNA were also evaluated for a comparison. Our results demonstrate for the first time that amsacrine is not a simple intercalator; rather mixed type of DNA binding (intercalation and minor groove) takes place between amsacrine and DNA. Further, this binding is highly sensitive towards the geometries and hydration patterns of different minor grooves present in the DNA. This study shows that ligand binding to DNA could be very sensitive to DNA base composition and DNA groove structures. Results demonstrated here could have implication for understanding cytotoxic mechanism of aminoacridine based anticancer drugs and provide directions to modify these drugs for better efficacy and few side-effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA bending and"structural"waters in major and minor grooves of A-tracts. Monte Carlo computer simulations

To elucidate the possible role of structural waters in stabilizing bent DNA, various conformations of AT-containing decamers, (A5T5)2 and A10:T10, were studied by Monte Carlo simulations. The duplexes were constrained to reproduce the NMR inter-proton distances for the A-tracts at two temperatures: ~5° and ~35°C. Analysis of the water shell structures revealed a strong correlation between the g...

متن کامل

Hydration of the RNA duplex r(CGCAAAUUUGCG)2 determined by NMR.

The so-called spine of hydration in the minor groove of AnTn tracts in DNA is thought to stabilise the structure, and kinetically bound water detected in the minor groove of such DNA species by NMR has been attributed to a narrow minor groove [Liepinsh, E., Leupin, W. and Otting, G. (1994) Nucleic Acids Res. 22, 2249-2254]. We report here an NMR study of hydration of an RNA dodecamer which has ...

متن کامل

Spectroscopic and Molecular Docking Studies on DNA Binding Interaction of Podophyllotoxin

The binding interaction of novel podophyllotoxin derivative, (3R,4R)-4-((benzo[d][1,3]dioxol-5-yl)methyl)-dihydro-3-(hydroxy(3,4-dimethoxyphenyl) methyl) furan-2(3H)-one (PPT), with calf thymus DNA (ctDNA) has been examined using UV-Visible absorption spectrophotometry, fluorescence spectroscopy, viscosity measurement and molecular docking studies. UV-Vis absorption results showed hyperchromic ...

متن کامل

Complicated water orientations in the minor groove of the B-DNA decamer d(CCATTAATGG)2 observed by neutron diffraction measurements

It has long been suspected that the structure and function of a DNA duplex can be strongly dependent on its degree of hydration. By neutron diffraction experiments, we have succeeded in determining most of the hydrogen (H) and deuterium (D) atomic positions in the decameric d(CCATTAATGG)2 duplex. Moreover, the D positions in 27 D2O molecules have been determined. In particular, the complex wate...

متن کامل

Exocyclic groups in the minor groove influence the backbone conformation of DNA.

Exocyclic groups in the minor groove of DNA modulate the affinity and positioning of nucleic acids to the histone protein. The addition of exocyclic groups decreases the formation of this protein-DNA complex, while their removal increases nucleosome formation. On the other hand, recent theoretical results show a strong correlation between the B(I)/B(II) phosphate backbone conformation and the h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013